Early evolution of biochemical markers in severe and non-severe patients infected with COVID-19

Image

INTRODUCTION

Long-term In December 2019, a cluster of severe unexplained pneumonia was identified in the city of Wuhan, in china [1]. This was caused by a novel Coronavirus species called SARS-COV-2 [2]. The World Health Organization (WHO) assigned in February 2020 the name COVID-19 to designate the disease caused by this virus. COVID-19 may be asymptomatic which amplifies viral spread [3]. However, common clinical symptoms include dry cough, fever, and fatigue [4]. Less common symptoms include headache, abdominal pain, nausea, vomiting, anosmia, and dysgeusia [4,5]. The severe forms of COVID-19 are similar to those of acute respiratory syndrome (SARS). World Health Organization’s (WHO) guidelines define “severe disease” as adults with pneumonia associated with one the following conditions: respiratory rate >30 breaths/ min; severe respiratory distress; or oxygen saturation (SpO2) ≤ 90% on room air [6]. In this study we describe biochemical disturbances of SARS-CoV-2 infection in a sample of patients that may correlate with COVID-19 disease severity.

PATIENTS AND METHODS

To This is a prospective comparative study including adult patients with COVID-19 disease hospitalized In Avicenna military hospital, Marrakech from 1st February to 31th May 2021. The inclusion criteria for enrollment into the study were: positive real-time polymerase chain reaction (RT-PCR) fromnaso-pharyngeal swab specimens, age ≥ 18 years, complete clinical data. The clinical pneumonia severity was defined as suggested in the literature [6,7]. The study was sponsored by the faculty of Medicine and Pharmacy of Marrakech (Cadi Ayyad University), approved by ethic commission of Avicenna military hospital, and complied with the Declaration of Helsinki. During the study period 70 Non-vaccinated COVID-19 patients were hospitalized at the Avicenna military hospital, 50 patients in the COVID-19 isolation hospital (non-severe group) and 20 patients in the medical intensive care unit (severe group). All blood samples were obtained at the admission, at 24-48 hours, 48-72 hours, and 72- 96 hours on a dry tube, centrifuged at 3000 rpm for five minutes. The determination of biochemical parameters was performed on the Cobas Roche® multiparametric analyzer.

All of the 70 patients underwent a screening of biochemical indexs: Inflammatory Biomarkers (Procalcitonin, CRP, ferritinemia) Cardiac markers (High-Sensitivity Troponin T(us), NT-proBNP), renal function tests (Blood urea nitrogen, creatinine), liver Function tests (AST, ALT, LDH, albumin), pro-inflammatory cytokine (Interleukine-6).

Statistical analysis

Statistical analysis was performed on IBM SPSS Statistics V25, latest version. Quantitative variables are expressed as median and mean and Fisher's test was used for analysis of qualitative variables. Pearson correlation analysis was used to analyze the relationship between different biochemical parameters and severity/outcome of COVID-19. A P-value <0.05 was considered statistically significant.

RESULTS

Epidemiology Overall, 70 COVID-19 patients were admitted at our hospital, 20 patients (severe group) in the medical intensive care unit and 50 patients (non-severe group) in the COVID-19 stable unit. Their ages ranged from 30 to 94 years; the median patient age was 59 years (64 years on severe group versus 58 years on non-severe group). 84% of patients were male. The median diagnostic delay was 9 days on severe group and 6 days on non-severe group. The main comorbidities were diabetes (18%), diabetes associated to arterial hypertension (10%), arterial hypertension (8%) and nephropathies (7%).